Material Safety Data Sheet
The Dow Chemical Company

Product Name: INSTA STIK(TM) Quik Set 23lb HFC COM Polyurethane Roof Adhesive
Issue Date: 12/18/2013
Print Date: 07 Mar 2014

The Dow Chemical Company encourages and expects you to read and understand the entire (M)SDS, as there is important information throughout the document. We expect you to follow the precautions identified in this document unless your use conditions would necessitate other appropriate methods or actions.

1. Product and Company Identification

Product Name
INSTA STIK™ Quik Set 23lb HFC COM Polyurethane Roof Adhesive

COMPANY IDENTIFICATION
The Dow Chemical Company
2030 Willard H. Dow Center
Midland, MI 48674
United States

Customer Information Number: 800-258-2436
SDSQuestion@dow.com

EMERGENCY TELEPHONE NUMBER
24-Hour Emergency Contact: 989-636-4400
Local Emergency Contact: 989-636-4400

2. Hazards Identification

Emergency Overview
Color: Natural
Physical State: Foam
Odor: Very slight
Hazardous product:

WARNING! May cause allergic skin reaction. May cause allergic respiratory reaction. May cause eye irritation. May cause skin irritation. May cause respiratory tract irritation. May cause lung injury. Vapor reduces oxygen available for breathing. May cause anesthetic effects. Elevated temperatures can cause hazardous polymerization. Toxic fumes may be released in fire situations. Isolate area. Keep upwind of spill. Stay out of low areas. Containers are under high pressure.

OSHA Hazard Communication Standard
This product is a “Hazardous Chemical” as defined by the OSHA Hazard Communication Standard, 29 CFR 1910.1200.
Potential Health Effects
Eye Contact: May cause eye irritation. May cause slight temporary corneal injury.
Skin Contact: Prolonged contact may cause moderate skin irritation with local redness. Material may stick to skin causing irritation upon removal. May stain skin.
Skin Absorption: Prolonged skin contact is unlikely to result in absorption of harmful amounts.
Skin Sensitization: Skin contact may cause an allergic skin reaction. Animal studies have shown that skin contact with isocyanates may play a role in respiratory sensitization.
Inhalation: In confined or poorly ventilated areas, vapor can easily accumulate and can cause unconsciousness and death due to displacement of oxygen. Excessive exposure may cause irritation to upper respiratory tract (nose and throat) and lungs. May cause pulmonary edema (fluid in the lungs.) Effects may be delayed. Symptoms of excessive exposure may be anesthetic or narcotic effects; dizziness and drowsiness may be observed. Excessive exposure may increase sensitivity to epinephrine and increase myocardial irritability (irregular heartbeats). Decreased lung function has been associated with overexposure to isocyanates.
Respiratory Sensitization: May cause allergic respiratory response. MDI concentrations below the exposure guidelines may cause allergic respiratory reactions in individuals already sensitized. Asthma-like symptoms may include coughing, difficult breathing and a feeling of tightness in the chest. Occasionally, breathing difficulties may be life threatening.
Ingestion: Low toxicity if swallowed. Small amounts swallowed incidentally as a result of normal handling operations are not likely to cause injury; however, swallowing larger amounts may cause injury. Observations in animals include: Gastrointestinal irritation.
Aspiration hazard: Based on physical properties, not likely to be an aspiration hazard.
Effects of Repeated Exposure: Tissue injury in the upper respiratory tract and lungs has been observed in laboratory animals after repeated excessive exposures to MDI/polymeric MDI aerosols.
Cancer Information: Lung tumors have been observed in laboratory animals exposed to respirable aerosol droplets of MDI/Polymeric MDI (6 mg/m³) for their lifetime. Tumors occurred concurrently with respiratory irritation and lung injury. Current exposure guidelines are expected to protect against these effects reported for MDI.
Birth Defects/Developmental Effects: In laboratory animals, MDI/polymeric MDI did not cause birth defects; other fetal effects occurred only at high doses which were toxic to the mother. Contains component(s) which did not cause birth defects in animals; other fetal effects occurred only at doses toxic to the mother.

<table>
<thead>
<tr>
<th>Component</th>
<th>CAS #</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diphenylmethane Disocyanate, isomers and homologues</td>
<td>9016-87-9</td>
<td>>= 10.0 - <= 30.0 %</td>
</tr>
<tr>
<td>4,4'-Methylene diphenyl disocyanate</td>
<td>101-68-8</td>
<td>>= 7.0 - <= 13.0 %</td>
</tr>
<tr>
<td>Polymethylenepolyphenyl polyisocyanate, polypropylene glycol copolymer</td>
<td>53862-69-8</td>
<td>>= 30.0 - <= 60.0 %</td>
</tr>
<tr>
<td>N,N'-Dimorpholinodiethyl ether</td>
<td>6425-39-4</td>
<td>>= 1.0 - <= 5.0 %</td>
</tr>
<tr>
<td>1,1,1,2-Tetrafluoroethane</td>
<td>811-97-2</td>
<td>>= 10.0 - <= 30.0 %</td>
</tr>
</tbody>
</table>

Note: CAS 101-68-8 is an MDI isomer that is part of CAS 9016-87-9.

4. First-aid measures

Description of first-aid measures
General advice: First Aid responders should pay attention to self-protection and use the recommended protective clothing (chemical resistant gloves, splash protection). If potential for exposure exists refer to Section 8 for specific personal protective equipment.
Inhalation: Move person to fresh air. If not breathing, give artificial respiration; if by mouth to mouth use resuscitor protection (pocket mask, etc.). If breathing is difficult, oxygen should be administered by qualified personnel. Call a physician or transport to a medical facility.
Skin Contact: Remove material from skin immediately by washing with soap and plenty of water. Remove contaminated clothing and shoes while washing. Seek medical attention if irritation persists. Wash clothing before reuse. An MDI skin decontamination study demonstrated that cleaning very
soon after exposure is important, and that a polyglycol-based skin cleanser or corn oil may be more effective than soap and water. Discard items which cannot be decontaminated, including leather articles such as shoes, belts and watchbands. Suitable emergency safety shower facility should be available in work area.

Eye Contact: Immediately flush eyes with water; remove contact lenses, if present, after the first 5 minutes, then continue flushing eyes for at least 15 minutes. Obtain medical attention without delay, preferably from an ophthalmologist. Suitable emergency eye wash facility should be immediately available.

Ingestion: If swallowed, seek medical attention. Do not induce vomiting unless directed to do so by medical personnel.

Most important symptoms and effects, both acute and delayed
Aside from the information found under Description of first aid measures (above) and Indication of immediate medical attention and special treatment needed (below), no additional symptoms and effects are anticipated.

Indication of Immediate medical attention and special treatment needed
Maintain adequate ventilation and oxygenation of the patient. May cause respiratory sensitization or asthma-like symptoms. Bronchodilators, expectorants and antitussives may be of help. Treat bronchospasm with inhaled beta2 agonist and oral or parenteral corticosteroids. Exposure may increase "myocardial irritability". Do not administer sympathomimetic drugs such as epinephrine unless absolutely necessary. Respiratory symptoms, including pulmonary edema, may be delayed. Persons receiving significant exposure should be observed 24-48 hours for signs of respiratory distress. If you are sensitized to disiocyanates, consult your physician regarding working with other respiratory irritants or sensitizers. Treatment of exposure should be directed at the control of symptoms and the clinical condition of the patient.

Excessive exposure may aggravate preexisting asthma and other respiratory disorders (e.g. emphysema, bronchitis, reactive airways dysfunction syndrome).

5. Fire Fighting Measures

Suitable extinguishing media
Water fog or fine spray. Dry chemical fire extinguishers. Carbon dioxide fire extinguishers. Foam, Alcohol resistant foams (ATC type) are preferred. General purpose synthetic foams (including AFFF) or protein foams may function, but will be less effective.

Extinguishing Media to Avoid: Do not use direct water stream. May spread fire.

Special hazards arising from the substance or mixture
- **Hazardous Combustion Products:** During a fire, smoke may contain the original material in addition to combustion products of varying composition which may be toxic and/or irritating. Combustion products may include and are not limited to: Nitrogen oxides. Isocyanates. Hydrogen fluoride. Hydrogen halides. Carbon dioxide.

Unusual Fire and Explosion Hazards: Some components of this product will burn in a fire situation. Container may vent and/or rupture due to fire. Vaporizes quickly at room temperature. Dense smoke is produced when product burns.

Advice for firefighters
- **Fire Fighting Procedures:** Keep people away. Isolate fire and deny unnecessary entry. Stay upwind. Keep out of low areas where gases (fumes) can accumulate. Do not use direct water stream. May spread fire. Fight fire from protected location or safe distance. Consider the use of unmanned hose holders or monitor nozzles. Immediately withdraw all personnel from the area in case of rising sound from venting device or discoloration of the container. Move container from fire area if this is possible without hazard. Use water spray to cool fire-exposed containers and fire-affected zone until fire is out.

Special Protective Equipment for Firefighters: Wear positive-pressure self-contained breathing apparatus (SCBA) and protective fire fighting clothing (includes fire fighting helmet, coat, trousers, boots, and gloves). Avoid contact with this material during fire fighting operations. If contact is likely, change to full chemical resistant fire fighting clothing with self-contained breathing apparatus. If this is not available, wear full chemical resistant clothing with self-contained breathing apparatus and fight fire from a remote location. For protective equipment in post-fire or non-fire clean-up situations, refer to the relevant sections.
6. Accidental Release Measures

Personal precautions, protective equipment and emergency procedures: Isolate area. Keep unnecessary and unprotected personnel from entering the area. Keep personnel out of low areas. Keep upwind of spill. Spilled material may cause a slipping hazard. Ventilate area of leak or spill. If available, use foam to smother or suppress. Confined space entry procedures must be followed before entering the area. Refer to Section 7, Handling, for additional precautionary measures. See Section 10 for more specific information. Use appropriate safety equipment. For additional information, refer to Section 8, Exposure Controls and Personal Protection.

Environmental precautions: Prevent from entering into soil, ditches, sewers, waterways and/or groundwater. See Section 12, Ecological Information.

Methods and materials for containment and cleaning up: Contain spilled material if possible. Absorb with materials such as: Dirt. Vermiculite. Sand. Clay. Do NOT use absorbent materials such as: Cement powder (Note: may generate heat). Collect in suitable and properly labeled open containers. Do not place in sealed containers. Suitable containers include: Metal drums. Plastic drums. Poly-lined fiber pans. Wash the spill site with large quantities of water. Attempt to neutralize by adding suitable decontaminant solution: Formulation 1: sodium carbonate 5 - 10%; liquid detergent 0.2 - 2%; water to make up to 100%, OR Formulation 2: concentrated ammonia solution 3 - 8%; liquid detergent 0.2 - 2%; water to make up to 100%. If ammonia is used, use good ventilation to prevent vapor exposure. Contact Dow for clean-up assistance. See Section 13, Disposal Considerations, for additional information.

7. Handling and Storage

Handling
General Handling: Avoid contact with eyes, skin, and clothing. Avoid prolonged or repeated contact with skin. Wash thoroughly after handling. Avoid breathing vapor. Use with adequate ventilation. Keep container tightly closed. Contents under pressure. Do not puncture or incinerate container. Do not enter confined spaces unless adequately ventilated. See Section 8, EXPOSURE CONTROLS AND PERSONAL PROTECTION.

Other Precautions: Spills of these organic materials on hot fibrous insulations may lead to lowering of the autoignition temperatures possibly resulting in spontaneous combustion.

Storage
Store in a dry place. Protect from atmospheric moisture. Maintain a nitrogen atmosphere. Do not store product contaminated with water to prevent potential hazardous reaction. Avoid temperatures above 50 °C (122 °F) See Section 10 for more specific information. Additional storage and handling information on this product may be obtained by calling your sales or customer service contact.

Storage Period: 12 Months
Storage Temperature: 25 °C

8. Exposure Controls / Personal Protection

| Exposure Limits |
|-----------------|-----------------|-----------------|-----------------|
| Component | List | Type | Value |
| 4,4'-Methylene diphenyl diisocyanate | ACGIH | TWA | 0.005 ppm |
| | OSHA Table Z-1 | Ceiling | 0.2 mg/m3 0.02 ppm |
| 1,1,1,2-Tetrafluoroethane | AIHA WEEL | TWA | 4,240 mg/m3 1,000 ppm |
Personal Protection

Eye/Face Protection: Use safety glasses (with side shields).

Skin Protection: Use protective clothing chemically resistant to this material. Selection of specific items such as face shield, boots, apron, or full body suit will depend on the task.

Hand protection: Use gloves chemically resistant to this material. Examples of preferred glove barrier materials include: Chlorinated polyethylene. Neoprene. Polyethylene. Ethyl vinyl alcohol laminate ("EVAL"). Polyvinyl chloride ("PVC" or "vinyl"). Viton. Examples of acceptable glove barrier materials include: Butyl rubber. Nitrile/butadiene rubber ("nitrile" or "NBR").

Respiratory Protection: Atmospheric levels should be maintained below the exposure guideline. When atmospheric levels may exceed the exposure guideline, use an approved air-purifying respirator equipped with an organic vapor sorbent and a particle filter. For situations where the atmospheric levels may exceed the level for which an air-purifying respirator is effective, use a positive-pressure air-supplying respirator (air line or self-contained breathing apparatus). For emergency response or for situations where the atmospheric level is unknown, use an approved positive-pressure self-contained breathing apparatus or positive-pressure air line with auxiliary self-contained air supply. In confined or poorly ventilated areas, use an approved self-contained breathing apparatus or positive pressure air line with auxiliary self-contained air supply. The following should be effective types of air-purifying respirators: Organic vapor cartridge with a particulate pre-filter.

Ingestion: Use good personal hygiene. Do not consume or store food in the work area. Wash hands before smoking or eating.

Engineering Controls

Ventilation: Use only with adequate ventilation. Local exhaust ventilation may be necessary for some operations. Provide general and/or local exhaust ventilation to control airborne levels below the exposure guidelines. Exhaust systems should be designed to move the air away from the source of vapor/aerosol generation and people working at this point. The odor and irritancy of this material are inadequate to warn of excessive exposure. Lethal concentrations may exist in areas with poor ventilation.

9. Physical and Chemical Properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appearance</td>
<td>Foam</td>
</tr>
<tr>
<td>Physical State</td>
<td>Natural</td>
</tr>
<tr>
<td>Color</td>
<td>Very slight</td>
</tr>
<tr>
<td>Odor</td>
<td>No test data available</td>
</tr>
<tr>
<td>Odor Threshold</td>
<td>Not applicable</td>
</tr>
<tr>
<td>pH</td>
<td>No test data available</td>
</tr>
<tr>
<td>Melting Point</td>
<td>No test data available</td>
</tr>
<tr>
<td>Freezing Point</td>
<td>No test data available</td>
</tr>
<tr>
<td>Boiling Point (760 mmHg)</td>
<td>No test data available</td>
</tr>
<tr>
<td>Flash Point - Closed Cup</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Evaporation Rate (Butyl Acetate = 1)</td>
<td>No test data available</td>
</tr>
<tr>
<td>Flammability (solid, gas)</td>
<td>Not applicable to liquids</td>
</tr>
<tr>
<td>Flammable Limits In Air</td>
<td>Lower: No test data available</td>
</tr>
<tr>
<td></td>
<td>Upper: No test data available</td>
</tr>
<tr>
<td>Vapor Pressure</td>
<td>2,100 kPa @ 55 °C Estimated.</td>
</tr>
<tr>
<td>Vapor Density (air = 1)</td>
<td>No test data available</td>
</tr>
<tr>
<td>Specific Gravity (H2O = 1)</td>
<td>1.155 25 °C/25 °C Calculated</td>
</tr>
<tr>
<td>Solubility in water (by weight)</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Partition coefficient, n-octanol/water (log Pow)</td>
<td>No data available for this product. See Section 12 for individual component data.</td>
</tr>
<tr>
<td>Autoignition Temperature</td>
<td>No test data available</td>
</tr>
</tbody>
</table>
10. Stability and Reactivity

Reactivity
No dangerous reaction known under conditions of normal use.

Chemical stability
Stable under recommended storage conditions. See Storage, Section 7. Unstable at elevated temperatures.

Possibility of hazardous reactions
Can occur. Elevated temperatures can cause hazardous polymerization.

Conditions to Avoid: Avoid temperatures above 50 °C (122 °F). Elevated temperatures can cause container to vent and/or rupture. Exposure to elevated temperatures can cause product to decompose.

Incompatible Materials: Avoid contact with: Acids. Alcohols. Amines. Ammonia. Bases. Metal compounds. Strong oxidizers. Products based on diisocyanates like TDI and MDI react with many materials to release heat. The reaction rate increases with temperature as well as with increased contact; these reactions can become violent. Contact is increased by stirring or if the other material acts as a solvent. Products based on diisocyanates such as TDI and MDI are not soluble in water and will sink to the bottom, but react slowly at the interface. The reaction forms carbon dioxide gas and a layer of solid polyurea. Reaction with water will generate carbon dioxide and heat.

Hazardous decomposition products
 Decomposition products depend upon temperature, air supply and the presence of other materials. Toxic gases are released during decomposition.

11. Toxicological Information

Acute Toxicity
Ingestion
As product: Single dose oral LD50 has not been determined. Estimated. LD50, rat > 2,000 mg/kg
Dermal
As product: The dermal LD50 has not been determined. Estimated. LD50, rabbit > 2,000 mg/kg
Inhalation
As product: The LC50 has not been determined.

Eye damage/eye irritation
May cause eye irritation. May cause slight temporary corneal injury.

Skin corrosion/irritation
Prolonged contact may cause moderate skin irritation with local redness. Material may stick to skin causing irritation upon removal. May stain skin.

Sensitization
Skin
Skin contact may cause an allergic skin reaction. Animal studies have shown that skin contact with isocyanates may play a role in respiratory sensitization.

Respiratory
May cause allergic respiratory response. MDI concentrations below the exposure guidelines may cause allergic respiratory reactions in individuals already sensitized. Asthma-like symptoms may
include coughing, difficult breathing and a feeling of tightness in the chest. Occasionally, breathing difficulties may be life threatening.

Repeated Dose Toxicity
Tissue injury in the upper respiratory tract and lungs has been observed in laboratory animals after repeated excessive exposures to MDI/polymeric MDI aerosols.

Chronic Toxicity and Carcinogenicity
Lung tumors have been observed in laboratory animals exposed to respirable aerosol droplets of MDI/Polymeric MDI (6 mg/m³) for their lifetime. Tumors occurred concurrently with respiratory irritation and lung injury. Current exposure guidelines are expected to protect against these effects reported for MDI.

Developmental Toxicity
In laboratory animals, MDI/polymeric MDI did not cause birth defects; other fetal effects occurred only at high doses which were toxic to the mother. Contains component(s) which did not cause birth defects in animals; other fetal effects occurred only at doses toxic to the mother.

Reproductive Toxicity
No relevant data found.

Genetic Toxicology
In vitro genetic toxicity studies were negative for component(s) tested. Genetic toxicity data on MDI are inconclusive. MDI was weakly positive in some in vitro studies; other in vitro studies were negative. Animal mutagenicity studies were predominantly negative. For the component(s) tested: 1,1,1,2-tetrafluoroethane Animal genetic toxicity studies were negative.

12. Ecological Information

Toxicity

Data for Component: Diphenylmethane Dilsocyanate, isomers and homologues
The measured ecotoxicity is that of the hydrolyzed product, generally under conditions maximizing production of soluble species. Material is practically non-toxic to aquatic organisms on an acute basis (LC50/EC50/EL50/LL50 >100 mg/L in the most sensitive species tested).

Fish Acute & Prolonged Toxicity
Based on information for a similar material: LC50, Danio rerio (zebra fish), static test, 96 h: > 1,000 mg/l

Aquatic Invertebrate Acute Toxicity
Based on information for a similar material: EC50, Daphnia magna (Water flea), static test, 24 h: > 1,000 mg/l

Aquatic Plant Toxicity
Based on information for a similar material: NOEC, Desmodesmus subspicatus (green algae), static test, Growth rate inhibition, 72 h: 1,640 mg/l

Toxicity to Micro-organisms
Based on information for a similar material: EC50, activated sludge test (OECD 209), Respiration inhibition, 3 h: > 100 mg/l

Toxicity to Soil Dwelling Organisms
EC50, Eisenia fetida (earthworms), 14 d: > 1,000 mg/kg

Data for Component: 4,4'-Methylenebisphenyl disocyanate
The measured ecotoxicity is that of the hydrolyzed product, generally under conditions maximizing production of soluble species. Material is practically non-toxic to aquatic organisms on an acute basis (LC50/EC50/EL50/LL50 >100 mg/L in the most sensitive species tested).

Fish Acute & Prolonged Toxicity
Based on information for a similar material: LC50, Danio rerio (zebra fish), static test, 96 h: > 1,000 mg/l

Aquatic Invertebrate Acute Toxicity
Based on information for a similar material: EC50, Daphnia magna (Water flea), static test, 24 h: > 1,000 mg/l

Aquatic Plant Toxicity
Based on information for a similar material: NOEC, Desmodesmus subspicatus (green algae), static test, Growth rate inhibition, 72 h: 1,640 mg/l

Toxicity to Micro-organisms
Based on information for a similar material: EC50, activated sludge test (OECD 209), Respiration inhibition, 3 h: > 100 mg/l

Toxicity to Soil Dwelling Organisms
EC50, Eisenia fetida (earthworms), 14 d: > 1,000 mg/kg

Data for Component: Polymethylene-polyphenyl polyisocyanate, polypropylene glycol copolymer
Not expected to be acutely toxic to aquatic organisms.

Data for Component: N,N'-Dimorpholinodiethyl ether
Material is practically non-toxic to fish on an acute basis (LC50 > 100 mg/L). May increase pH of aquatic systems to > pH 10 which may be toxic to aquatic organisms.

Fish Acute & Prolonged Toxicity
LC50, Danio rerio (zebra fish), static test, 96 h: > 2,150 mg/l

Aquatic Invertebrate Acute Toxicity
EC50, Daphnia, static test, 48 h: > 100 mg/l

Aquatic Plant Toxicity
ErC50, algae, static test, 72 h: > 100 mg/l

Toxicity to Micro-organisms
EC50, activated sludge test (OECD 209); Bacteria, static test, 3 h: 100 mg/l

Data for Component: 1,1,1,2-Tetrafluoroethane
Material is practically non-toxic to aquatic organisms on an acute basis (LC50/EC50/EL50/LL50 >100 mg/L in the most sensitive species tested).

Fish Acute & Prolonged Toxicity
LC50, Oncorhynchus mykiss (rainbow trout), static test, 96 h: 450 mg/l

Aquatic Invertebrate Acute Toxicity
EC50, Daphnia magna (Water flea), 48 h, immobilization: 980 mg/l

Persistence and Degradability

Data for Component: Diphenylmethane Disocyanate, isomers and homologues
In the aquatic and terrestrial environment, material reacts with water forming predominantly insoluble polyureas which appear to be stable. In the atmospheric environment, material is expected to have a short tropospheric half-life, based on calculations and by analogy with related diisocyanates.

OECD Biodegradation Tests: Based on information for a similar material:

<table>
<thead>
<tr>
<th>Biodegradation</th>
<th>Exposure Time</th>
<th>Method</th>
<th>10 Day Window</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 %</td>
<td>28 d</td>
<td>OECD 302C Test</td>
<td>Not applicable</td>
</tr>
</tbody>
</table>

Data for Component: 4,4'-Methylene diphenyl disocyanate
In the aquatic and terrestrial environment, material reacts with water forming predominantly insoluble polyureas which appear to be stable. In the atmospheric environment, material is expected to have a short tropospheric half-life, based on calculations and by analogy with related diisocyanates.

OECD Biodegradation Tests: Based on information for a similar material:

<table>
<thead>
<tr>
<th>Biodegradation</th>
<th>Exposure Time</th>
<th>Method</th>
<th>10 Day Window</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 %</td>
<td>28 d</td>
<td>OECD 302C Test</td>
<td>Not applicable</td>
</tr>
</tbody>
</table>

Data for Component: Polymethylene-polyphenyl polyisocyanate, polypropylene glycol copolymer
Expected to degrade only slowly in the environment.

Data for Component: N,N'-Dimorpholinodiethyl ether
Material is expected to biodegrade only very slowly (in the environment). Fails to pass OECD/EEC tests for ready biodegradability.

OECD Biodegradation Tests:

<table>
<thead>
<tr>
<th>Biodegradation</th>
<th>Exposure Time</th>
<th>Method</th>
<th>10 Day Window</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 10 %</td>
<td>28 d</td>
<td>OECD 301A Test</td>
<td>fail</td>
</tr>
</tbody>
</table>

Indirect Photodegradation with OH Radicals
<table>
<thead>
<tr>
<th>Rate Constant</th>
<th>Atmospheric Half-life</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.56E-10 cm³/s</td>
<td>0.03 d</td>
<td>Estimated.</td>
</tr>
</tbody>
</table>

Theoretical Oxygen Demand: 2.49 mg/mg

Data for Component: **1,1,1,2-Tetrafluoroethane**
- Material is expected to biodegrade only very slowly (in the environment). Fails to pass OECD/EEC tests for ready biodegradability.
- OECD Biodegradation Tests:
 - **Indirect Photodegradation with OH Radicals**
 - Rate Constant: 6.20E-15 cm³/s
 - Atmospheric Half-life: 1,700 d
 - Theoretical Oxygen Demand: 0.47 mg/mg

Bioaccumulative potential

Data for Component: **Diphenylmethane Disocyanate, isomers and homologues**
- **Bioaccumulation**: Bioconcentration potential is low (BCF < 100 or Log Pow < 3).
 - In the aquatic and terrestrial environment, movement is expected to be limited by its reaction with water forming predominantly insoluble polyureas.
 - **Bioconcentration Factor (BCF)**: Bioconcentration potential is low (BCF < 100 or Log Pow < 3).
 - 92; Cyprinus carpio (Carp)

Data for Component: **4,4’-Methylendiphenyl disocyanate**
- **Bioaccumulation**: Bioconcentration potential is low (BCF < 100 or Log Pow < 3).
 - In the aquatic and terrestrial environment, movement is expected to be limited by its reaction with water forming predominantly insoluble polyureas.
 - **Bioconcentration Factor (BCF)**: Bioconcentration potential is low (BCF < 100 or Log Pow < 3).
 - 92; Cyprinus carpio (Carp)

Data for Component: **Poly(methylpolysiloxane), polypropylene glycol copolymer**
- **Bioaccumulation**: In the aquatic and terrestrial environment, movement is expected to be limited by its reaction with water forming predominantly insoluble polyureas.

Data for Component: **N,N’-Dimorpholinodiethyl ether**
- **Bioaccumulation**: Bioconcentration potential is low (BCF < 100 or Log Pow < 3).
 - **Partition coefficient, n-octanol/water (log Pow)**: 0.5 Estimated.

Data for Component: **1,1,1,2-Tetrafluoroethane**
- **Bioaccumulation**: Bioconcentration potential is low (BCF < 100 or Log Pow < 3).
 - **Partition coefficient, n-octanol/water (log Pow)**: 1.68 Estimated.

Mobility in soil

Data for Component: **Diphenylmethane Disocyanate, isomers and homologues**
- **Mobility in soil**: In the aquatic and terrestrial environment, movement is expected to be limited by its reaction with water forming predominantly insoluble polyureas.

Data for Component: **N,N’-Dimorpholinodiethyl ether**
- **Mobility in soil**: Potential for mobility in soil is low (Koc between 500 and 2000). Given its very low Henry’s constant, volatilization from natural bodies of water or moist soil is not expected to be an important fate process.
 - **Partition coefficient, soil organic carbon/water (Koc)**: 784 Estimated.
 - **Henry’s Law Constant (H)**: 3.79E-18 atm*m³/mole; 25 °C Estimated.

Data for Component: **1,1,1,2-Tetrafluoroethane**
- **Mobility in soil**: Potential for mobility in soil is high (Koc between 50 and 150).
 - **Partition coefficient, soil organic carbon/water (Koc)**: 97 Estimated.
 - **Henry’s Law Constant (H)**: 5.00E-02 atm*m³/mole; 25 °C Measured
13. Disposal Considerations

DO NOT DUMP INTO ANY SEWERS, ON THE GROUND, OR INTO ANY BODY OF WATER. All disposal practices must be in compliance with all Federal, State/Provincial and local laws and regulations. Regulations may vary in different locations. Waste characterizations and compliance with applicable laws are the responsibility solely of the waste generator. AS YOUR SUPPLIER, WE HAVE NO CONTROL OVER THE MANAGEMENT PRACTICES OR MANUFACTURING PROCESSES OF PARTIES HANDLING OR USING THIS MATERIAL. THE INFORMATION PRESENTED HERE PERTAINS ONLY TO THE PRODUCT AS SHIPPED IN ITS INTENDED CONDITION AS DESCRIBED IN MSDS SECTION: Composition Information. FOR UNUSED & UNCONTAMINATED PRODUCT, the preferred options include sending to a licensed, permitted: Recycler, Reclaimer. Incinerator or other thermal destruction device. For additional information, refer to: Handling & Storage Information, MSDS Section 7 Stability & Reactivity Information, MSDS Section 10 Regulatory Information, MSDS Section 15

14. Transport Information

DOT: Non-Bulk
Proper Shipping Name: CHEMICAL UNDER PRESSURE, N.O.S.
Technical Name: 1,1,1,2-Tetrafluoroethane
Hazard Class: 2.2 ID Number: UN3500

DOT: Bulk
Proper Shipping Name: CHEMICAL UNDER PRESSURE, N.O.S.
Technical Name: 1,1,1,2-Tetrafluoroethane
Hazard Class: 2.2 ID Number: UN3500

IMDG
Proper Shipping Name: CHEMICAL UNDER PRESSURE, N.O.S.
Technical Name: 1,1,1,2-Tetrafluoroethane
Hazard Class: 2.2 ID Number: UN3500
EMS Number: F-C,S-V
Marine pollutant: No

ICAO/IATA
Proper Shipping Name: CHEMICAL UNDER PRESSURE, N.O.S.
Technical Name: 1,1,1,2-Tetrafluoroethane
Hazard Class: 2.2 ID Number: UN3500 Cargo Packing Instruction: 218
Passenger Packing Instruction: 218
Additional Information
Reportable quantity: 5,000 lb – MDI - RQ based on 172.101 Appendix A for pure MDI

This information is not intended to convey all specific regulatory or operational requirements/information relating to this product. Additional transportation system information can be obtained through an authorized sales or customer service representative. It is the responsibility of the transporting organization to follow all applicable laws, regulations and rules relating to the transportation of the material.

15. Regulatory Information

OSHA Hazard Communication Standard
This product is a "Hazardous Chemical" as defined by the OSHA Hazard Communication Standard, 29 CFR 1910.1200.

Page 10 of 12
Superfund Amendments and Reauthorization Act of 1986 Title III (Emergency Planning and Community Right-to-Know Act of 1986) Sections 311 and 312
Immediate (Acute) Health Hazard Yes
Delayed (Chronic) Health Hazard Yes
Fire Hazard No
Reactive Hazard No
Sudden Release of Pressure Hazard Yes

Superfund Amendments and Reauthorization Act of 1986 Title III (Emergency Planning and Community Right-to-Know Act of 1986) Section 313
This product contains the following substances which are subject to the reporting requirements of Section 313 of Title III of the Superfund Amendments and Reauthorization Act of 1986 and which are listed in 40 CFR 372.

<table>
<thead>
<tr>
<th>Component</th>
<th>CAS #</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diphenylmethane Diisocyanate, isomers and homologues</td>
<td>9016-87-9</td>
<td>>= 10.0 - <= 30.0 %</td>
</tr>
<tr>
<td>4,4’-Methylendiphenyl diisocyanate</td>
<td>101-68-8</td>
<td>>= 7.0 - <= 13.0 %</td>
</tr>
</tbody>
</table>

Pennsylvania (Worker and Community Right-To-Know Act): Pennsylvania Hazardous Substances List and/or Pennsylvania Environmental Hazardous Substance List:
The following product components are cited in the Pennsylvania Hazardous Substance List and/or the Pennsylvania Environmental Substance List, and are present at levels which require reporting.

<table>
<thead>
<tr>
<th>Component</th>
<th>CAS #</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diphenylmethane Diisocyanate, isomers and homologues</td>
<td>9016-87-9</td>
<td>>= 10.0 - <= 30.0 %</td>
</tr>
<tr>
<td>4,4’-Methylendiphenyl diisocyanate</td>
<td>101-68-8</td>
<td>>= 7.0 - <= 13.0 %</td>
</tr>
</tbody>
</table>

Pennsylvania (Worker and Community Right-To-Know Act): Pennsylvania Special Hazardous Substances List:
To the best of our knowledge, this product does not contain chemicals at levels which require reporting under this statute.

Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) Section 103
This product contains the following substances which are subject to CERCLA Section 103 reporting requirements and which are listed in 40 CFR 302.4.

<table>
<thead>
<tr>
<th>Component</th>
<th>CAS #</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diphenylmethane Diisocyanate, isomers and homologues</td>
<td>9016-87-9</td>
<td>>= 10.0 - <= 30.0 %</td>
</tr>
<tr>
<td>4,4’-Methylendiphenyl diisocyanate</td>
<td>101-68-8</td>
<td>>= 7.0 - <= 13.0 %</td>
</tr>
</tbody>
</table>

California Proposition 65 (Safe Drinking Water and Toxic Enforcement Act of 1986)
This product contains no listed substances known to the State of California to cause cancer, birth defects or other reproductive harm, at levels which would require a warning under the statute.

US. Toxic Substances Control Act
All components of this product are on the TSCA Inventory or are exempt from TSCA Inventory requirements under 40 CFR 720.30
CEPA - Domestic Substances List (DSL)
All substances contained in this product are listed on the Canadian Domestic Substances List (DSL) or are not required to be listed.

16. Other Information

Product Literature
Additional information on this product may be obtained by calling your sales or customer service contact.

Recommended Uses and Restrictions

Identified uses

Adhesive.

Revision

Identification Number: 1015176 / 1001 / Issue Date 12/18/2013 / Version: 4.0

Most recent revision(s) are noted by the bold, double bars in left-hand margin throughout this document.

Legend

<table>
<thead>
<tr>
<th>N/A</th>
<th>Not available</th>
</tr>
</thead>
<tbody>
<tr>
<td>W/W</td>
<td>Weight/Weight</td>
</tr>
<tr>
<td>OEL</td>
<td>Occupational Exposure Limit</td>
</tr>
<tr>
<td>STEL</td>
<td>Short Term Exposure Limit</td>
</tr>
<tr>
<td>TWA</td>
<td>Time Weighted Average</td>
</tr>
<tr>
<td>ACGIH</td>
<td>American Conference of Governmental Industrial Hygienists, Inc.</td>
</tr>
<tr>
<td>DOW HG</td>
<td>Dow Industrial Hygiene Guideline</td>
</tr>
<tr>
<td>WEEL</td>
<td>Workplace Environmental Exposure Level</td>
</tr>
<tr>
<td>HAZ DES</td>
<td>Hazard Designation</td>
</tr>
<tr>
<td>Action Level</td>
<td>A value set by OSHA that is lower than the PEL which will trigger the need for activities such as exposure monitoring and medical surveillance if exceeded.</td>
</tr>
</tbody>
</table>

The Dow Chemical Company urges each customer or recipient of this (M)SDS to study it carefully and consult appropriate expertise, as necessary or appropriate, to become aware of and understand the data contained in this (M)SDS and any hazards associated with the product. The information herein is provided in good faith and believed to be accurate as of the effective date shown above. However, no warranty, express or implied, is given. Regulatory requirements are subject to change and may differ between various locations. It is the buyer's/user's responsibility to ensure that his activities comply with all federal, state, provincial or local laws. The information presented here pertains only to the product as shipped. Since conditions for use of the product are not under the control of the manufacturer, it is the buyer's/user's duty to determine the conditions necessary for the safe use of this product. Due to the proliferation of sources for information such as manufacturer-specific (M)SDSs, we are not and cannot be responsible for (M)SDSs obtained from any source other than ourselves. If you have obtained an (M)SDS from another source or if you are not sure that the (M)SDS you have is current, please contact us for the most current version.